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Abstract 

The development of the statistical dynamical theory 
of diffraction by real crystals involves two order par- 
ameters: a long-range and a short-range one. These 
parameters play a fundamental role in practical appli- 
cations of the theory to real diffraction data. A reason- 
able probabilistic model is proposed to describe the 
phase correlation at two given scattering positions. 
This model allows for a tractable solution of the 
propagation equations for the beams. 

Introduction 

The propagation of X-rays or neutrons in real crystals 
can be described by Takagi's equations (Takagi, 1962, 
1969; Kato, 1973). For a Bragg reflection associated 
with the reciprocal-lattice vector h, let Do and Dh be 
the amplitudes of the waves propagating in the 
incident direction (with coordinate So) and the diffrac- 
ted direction (with coordinate Sh) respectively. 
Takagi's equations are 

ODo/OSo = ix~q~Dh, 
(1) 

cg D h /  cgS h = iXhq~ * D o. 

In (1) Xh is given by 

Xh = ( AaC/  V)Fh (2) 
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where A is the wavelength, V is the volume of the 
unit cell, a = 1 0 - 1 2 c m  for neutrons and 0.28x 
10 -12 c m  for X-rays, and C is the polarization factor 
for X-rays. Fh is the structure factor 

Ix~l = 1 / A  

where A is the extinction distance. 
The imperfect nature of the crystal occurs through 

the phase factor q~, 

tp = exp [27rih. u(r)] (3) 

where u(r) is the local displacement from the perfect 
position r. 

Without a precise knowledge of the distortion field 
[u(r)], (1) can only be solved by introducing a statis- 
tical hypothesis concerning the distribution of u 
within the crystal. Kato (1980) proposed a statistical 
theory for describing the propagation of the beams 
in real crystals: this theory covers the whole range 
between perfect crystals (dynamical theory) and 
ideally imperfect crystals (kinematical theory). The 
beams, which are coherent for a perfect crystal, 
become partially incoherent, owing to phase coup- 
lings of the type q~(r)~o*(r') which occur in the 
expression for the intensities. The statistical proper- 
ties of the phase factor ~o(r) are thus essential for 
developing the theory. 

Kato's theory has been modified by the present 
authors (A1 Haddad & Becker, 1988) and then gen- 
eralized (Becker & A1 Haddad, 1989a, b). The pur- 
pose of the present paper is to discuss the statistical 
properties of q~(r) and its spatial correlations, since 
this leads to the fundamental parameters appearing 
in the integrated reflectivity or in the extinction factor. 
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Statistical hypothesis 

(A) It is possible to consider u(r) as a random 
variable when r varies within the crystal. Let p(u) be 
the probabil i ty distr ibution function for u. Let E be 
the quanti ty 

E = J exp (2rrih.  u)p(u) du. (4) 

p(u) is assumed to be an even function, so that the 
average u is zero. Owing to the definition of  p(u),  
one can also write 

E = ( 1 / V )  ~ q~(r) dr. (5) 
V 

Kato (1980) defined E as the 'static Debye-Wal le r  
factor'.  It is the long-range order parameter  of the 
theory. I E[ < - 1, and E = 1 corresponds to the perfect 
crystal case. 

Assuming t to be small compared with the crystal 
dimension,  one can also define 

F( t )=(1 /V)  ~ q~(r)~o*(r+t) dr. (6) 
V 

F(t)  is a spatial correlation function of the phase,  
which is assumed to be a real function. 

Following Kato, we write 

F( t )  = E 2 + (1 - E2)g(t)  (7) 

where the pair-correlation function g(t) is such that 
g(O) = 1. 

Higher-order  correlation functions can also be 
defined. However,  the theories that have been 
developed so far are restricted to pair correlations. 
The meaning of  this restriction is that the correlation 
length of g(t)  must be smaller than the average dis- 
tance between two successive scattering events. 

(B) The problem can be tackled from a different 
viewpoint. It is assumed in the diffraction theories 
that the beam intensities are uniquely defined when 
the distributions for ~o(r) and q~(r)~o*(r') are given. 
We consider the ensemble of  crystals (of a common 
shape) with the same distribution functions for ~o(r) 
and ~o(r)~o*(r'). u(r) and ~o(r) are assumed to be 
ergodic and homogeneous  stochastic processes: their 
distribution over the various members of the 
ensemble, for fixed r, is equivalent to their distr ibution 
over r, for a fixed member  of the ensemble. The 
observed diffracted intensity Ih can be viewed as the 
ensemble average 

I h = (IOhl2). ( 8 )  

Equation (4) can be written as 

E = (~o(r)). (9) 

E is independent  of  r, owing to the proper ty  of 
homogeneity.  Similarly 

F ( t ) = ( q ~ ( r ) ~ * ( r + t ) ) =  E 2 + ( 1 - E 2 ) g ( t ) .  (10) 

Because of homogenei ty,  F( t )  does not depend on r. 

For simplicity, isotropy will be assumed, so that 
F( t )  depends only on t. The correlation length ~" is 
defined in any direction as 

cc 

~= ~ g(t) dt (11) 
0 

together with generalized correlation lengths 

co 

7".= ~ g"(t) dt. (12) 
o 

(C)  If fi is the unit vector along h, we define 

~(r) = ft. u(r). (13) 

Let P(~:) be the probabil i ty distribution function 
for ~, 

E = J" P(~)  exp (2iTrh~) dE. (14) 

The joint probabil i ty for having ~¢ at r and ~:' at (r + t) 
is 

P2[~(r), ( ( r + t ) ]  = P2(¢, ~', t), 

such that 

d (  P2(~, ~', t)= P(¢). (15) 

The correlation function F( t )  is thus 

F(t)= ~ ~ exp [27rih(~- ~')]P2(~, ~', t) d~ d~'. (16) 

(D)  The optical path from a source S to a point  
M is an ordered trajectory, made of a sequence of 
segments parallel to the incident- and the diffracted- 
beam directions. If we consider two points M and 
M '  in the crystal, one of  them is always a preceding 
one with respect to the propagat ion process. Let us 
consider an ordered sequence of points M~, M2, . . . ,  
M, .  We can define the conditional probabil i ty of 
having a distortion ~:, at r , ,  knowing the distortions 
~ l ( r l ) . . . . ,  ~ , , - l ( r , - ; ) ,  as 

P , [sC.(r . ) /sc . - , ( r . - , ) .  • • •, s~,(r,)]. 

The stochastic process sO(r) is said to be a Markov 
process (Feller, 1970; Van Kampen,  1981; Ziman,  
1979) if this condit ional  probabil i ty depends only on 
£,_~(r,_x) and not on the preceding events. This 
assumption is clearly consistent with the pair-correla- 
tion restriction: one considers only the correlation 
between nearest neighbours.  Thus, 

P,[s~. ( r . ) / s c . - t ( r . - , ) ,  • • •, set(r,) ] 

= P, [ so. (r .) /~:._ ~ ( r ._ , )  ]. (17) 

From (17) and elementary probabil i ty theory,  we 
obtain 

Pz(£,,£z,t)=P(~,)Pl[£z(r+t)/£,(t)]. (18) 

If we consider  a three-point  event [£;(r~), ~:2(r2), 
~2(r3)], where (r l ,  r2, r3) is an ordered triplet of  points,  
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then we obtain 

P3[~:3(r3), ~:2(r2), ~1(rl)] = P(¢l)Pl[~2(r2)/~:,(rl)] 

x P~ [ ~:3 (r3)/~:2(r2) ]. (19) 

Integrating (19) over ~2, one finds 

P2[~:3(r3), ~:l(r~)] = P(~:I) ~ P~[~:2(rE)/~:l(r~)] 

X P l [ ~ : 3 ( r 3 ) / ¢ 2 ( r 2 ) ]  d~:2. 

Comparison with (17) finally leads to the Chapman-  
Kolmogorov equation 

P1[~3(r3)/¢,(rl)] = ~ Pl[~3(r3)/~:2(r2)] 

x P~[¢2(r2)/sC~(r~)] dsC2. (20) 

If ~:(r) is a Markov process, (20) must be fulfilled. 

Crystals with a high degree of perfection 

We first consider the limiting case of a crystal with a 
high degree of perfection. This means that E is very 
close to 1. In other words, the random variable ~:(r) 
will remain very small. Since dynamical effects occur 
only at small Bragg angles, this corresponds to the 
case where 

h~:(r) = h .  u(r) < 1. 

In this case, one can make the approximation 

F ( t ) -  1 - 1 4 7 r E h 2 ( ( ~ -  ~,)~) 

= 1 - 47r2h2(~ 2) + 4 " t r 2 h 2 ( ~ : ' ) .  

Since E 2 c a n  also be approximated as 

E 2-~ 1 -  4"n'2h2(~:2), 

F(t)  can be written in the form 

F(t)=EE+(1-EE)(¢(r)¢(r+t))/(¢2).  (21) 

The usual correlation factor in probability theory is 

F(t)  = (~(r)~(r + t))/(~2). (22) 

Within the present approximation, we see from (7) 
that the pair-correlation function g(t), which is the 
leading term in the diffraction theory, can be represen- 
ted as 

lim g ( t ) =  F(t). (23) 
E-~1 

Since all directions are supposed to be equivalent, 
g(t) will not depend on h or on the Bragg angle. The 
correlation length r will be constant. 

The Gaussian random model 

In order to deal with smaller values of E, or larger 
Bragg angles, it is necessary to make some statistical 
assumptions. The most common model in probability 

theory is the Gaussian distribution (Feller, 1970; 
Ziman, 1979), 

P2(~:, s c', t) = {27r(sC2)[ 1 - r2 ( t ) ]}  - '  

[ ,f ~:~ + ~:'~- 2~:¢r(t) 
×exp \ - [  ,~sc2--~i - F - - - ~  })" (24) 

This model is justified when ~: can be considered as 
the sum of a large number of independent random 
contributions. For example, we may represent ~:(r) 
as a Fourier sum, 

sO(r) = Y. a(q) exp (2iTrq. r). (25) 
q 

When q varies in the Brillouin zone, and if one 
assumes statistical independence among the various 
components a(q), then (24) follows from the central 
limit theorem. F(t)  takes the simple form 

F(t)=exp{-47r2h2(~z)[1-F(t)]} (26) 

and E is given by 

E =exp  (-27r2hZ(~:2))=exp [-(2~r2/3)hZ(u2)]. (27) 

If it is further assumed that ~:(r) is a Markov pro- 
cess, the application of (20) leads to 

F( t  + t') = F( t )F( t ' )  (28) 

where 

t = Xfio + Yfih x, y >_ O 

(fi0 and fih are unit vectors along the incident and 
diffracted directions). If all directions are equivalent, 
(28) is only compatible with 

F ( t ) = e x p ( - x / ~ ) e x p ( - y / r ) ,  (29) 

r being a characteristic length, which measures the 
domains of phase coherence. 

The advantage of the decomposition (7) for F(t) ,  
in the development of the diffraction theory, is the 
possibility of separating the intensities into coherent 
and incoherent contributions. However, we notice 
that F(t),  as given by (26), is not well suited for the 
decomposition (7), since g(t) would be a complicated 
function depending on h. 

However, we may notice that the Gaussian model 
might permit another type of solution of Takagi's 
equations. Using the notation of Becker & A1 Haddad 
(1989a, b), (1) can be written in the integral form 

S 0 S h 

Dh(So, Sh)=--X 2 ~ d~ ~ drl ~p*(So, rl)~(~, rl)Dh(~, rl) 
0 0 

+ ix~*(So, O) 

=--£Dh + ixq~*(So, 0), (30) 

o o  A 

Dh = • (-1)"L"[ix~*(so,O)] (31) 
n=O 
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and 

Ih = (IDh] 2) 

= Z ( -1)  "+" < f~"[ix~°*(So, O)]£*m[ixcP(So, 0)]. 
?l,m 

(32) 

Each term in (32) would involve integrals over 
Gaussian-type correlations, each of the form (26). 
Such integrations are in principle possible, but would 
involve exponential integral functions. The notion of 
incoherent versus coherent processes would be lost. 

A s imple  model  for the pair distr ibution 

Rather than assuming a Gaussian model, we wish to 
discuss some general properties of P2(~, ~:', t). 

Where t->0, ~:'(r+t)-> ~:(r), for any model of con- 
tinuous disorder (Ziman, 1979). This leads to 

lim P2[~=, ~:', t] = P(~=)6(~'- ~=). (33)  
t - - , 0  

This is the complete correlation limit. 
Where t--> ~ ,  ~(r) and ~:'(r+t) are no longer corre- 

lated. Therefore 

lim P2[~:, ~', t] = P(~)P((). (34) 
t - , c O  

This is the uncorrelated limit. 
The simplest model is to assume a linear relation 

between these two limits, (33) and (34). We thus write 

P2(~:, ~:', t )=  a(t)P(~:)6(~:'- ~) 

+[1-a(t)]P(~)P(~'), (35) 

where the weighting factor a(t) is to be determined. 
a(t) must fulfil the conditions 

a ( 0 ) =  1, a(oo) = 0. (36) 

Let us calculate the quantity 

(~:(r)~:(r + t ) )= ~ ~ ff'P2(~, ~:', t) d~: d~:'. 

The application of (35) leads to 

(~(r) sC(r + t)) = (~2)a (t) +[  1 - a(t)](so) z. 

Since (s ¢) is assumed to be zero, 

a(t) = F(t),  (37) 

which gives a very clear meaning to the weighting 
factor a(t)  in (35): 

P2(¢, ¢', t) = F(t)P(¢)6(¢'- ~) 

+[1-F(t)]P(~)P(¢'). (38) 

Using (16), we get for F(t) 

F(t)=F(t)+[1-F(t)]E2=E2+[1-E2]F(t), (39) 

from which we conclude that g(t) is equal to F(t). 

Within this model, g(t) is independent of h. The 
model is indeed well suited for the decomposition 
(7) and thus for a separation into coherent and inco- 
herent contributions to the intensity. 

E is of course h dependent, and can reasonably 
well be represented as 

E = e x p  [-(27r2/3)h2(u2)]. (40) 

If we further assume ~(r) to be a Markov process, 
we make use of the Chapman-Kolmogorov identity 
(20), with 

P,[  ~2(r2) /~ , (r , )  ] = r(r2 - r , ) ~ ( e 2  - ~,) 

+ [1 - F ( r 2 -  r,)]P(~%). (41) 

For an ordered triplet (r,, r2, r3), one  gets 

F ( r 3 -  r,)6(s%- ~:,) + [1 - F(r3 - r,)] P(~:3) 

= F ( r 3 -  r2)F(r2- r,)6(~:3 - ~,) 

+[1 - F(r3-r2)F(r2-rl)]P(¢3), 

which is fulfilled if 

F(r3 - rl) = F ( r 3 -  r2)F(r2- rl). 

We retrieve the condition (28), and thus 

g(t)=g(x)g(y), 
(42) 

g(x) = exp (-x/r) ,  

r being the coherence length of the phase factor q~. 
We notice that (42) was implied in several approxi- 

mations when developing the diffraction theory 
(Becker & AI Haddad, 1989a, b). 

The present model is therefore consistent with the 
development of the theory for a real crystal. The last 
point to be considered is the limit of validity of the 
Markov process to describe multiple scattering. As 
we said earlier, it is equivalent to assuming that the 
correlation length is smaller than the average distance 
between points where multiple scattering occurs. The 
average distance between centres of scattering is of 
the order of A, the extinction length. Therefore, the 
present model may be considered as valid if 

z ,< A, (43) 

again a condition that was implied in the theories. 

Conc lud ing  remarks  

It has been possible to describe phase coupling by 
a model which is a distance-weighted linear com- 
bination between a fully correlated and a totally un- 
correlated model. This model turns out to be totally 
consistent with the assumptions that are to be made 
in the development of the diffraction theory. It leads 
to a short-range-order parameter z that is a constant, 
E being represented by a Gaussian in h. Two par- 
ameters are thus needed, (u 2) and T. 
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Abstract 
With the growing availability of computer power it 
has become routine to perform exhaustive multi- 
dimensional searches in protein crystallography. 
Specifically, in cases where homologous or partially 
homologous structures are available, the initial inter- 
pretation of poor electron density maps is done by 
performing computer-intensive rotational and trans- 
lational searches in real space. Often such calcula- 
tions of the best fit between structure and map can- 
not even be attempted owing to the vast computing 
effort involved (years of MicroVAX II time). Here, 
the combinatorial optimization method, simulated 
annealing, is shown to reduce substantially the com- 
puting effort involved and also to permit computa- 
tions that are beyond the reach of current algorithms. 
This is illustrated with practical examples involving 
the structure determinations of the human histo- 
compatibility antigen HLA-A2 and an influenza virus 
hemagglutinin-sialic acid complex. 

1. Introduction 
In cases where poor and not-readily interpretable 
electron density (e.d.) maps of protein structures are 
available, it has become common to perform real- 
space rotation and translation searches using 
homologous or partially homologous protein struc- 
tures as search objects against the available map 
(Huber, 1965; Colman & Webster, 1985; Reynolds, 
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Remington, Weaver, Fisher, Anderson, Ammon & 
Matthews, 1985). These exhaustive searches in gen- 
eral require large amounts of computer time and often 
such searches cannot be attempted for this reason. 
However, when attempted they typically require on 
the order of hundreds of MicroVAX II c.p.u, hours 
(Colman & Webster, 1985; Reynolds et al., 1985) (NB 
a Cray I is on the order of 100 times faster than a 
MicroVAX II). Even in these cases it may be 
necessary to approximate the search object to the 
a-carbon backbone alone. Such exhaustive calcula- 
tions ascertain the best-fit six-dimensional orientation 
of the search object in the map. However, depending 
on the appropriateness of the structural homologue 
and the 'noise' level of the map, the optimal solution 
may not necessarily correspond to the true solution 
of the crystallographic problem. Nonetheless, the cor- 
rect solution is always found to be among the better 
solutions to the search procedure. In short, the prob- 
lem is that of using the least-approximate search 
object and to obtain a list of good solutions to the 
search problem while minimizing the amount of com- 
puter effort. 

The complex optimization technique of simulated 
annealing (also known as the Metropolis algorithm) 
is shown in this paper to have these desired qualities 
(Metropolis, Rosenbluth, Rosenbluth, Teller & Tel- 
ler, 1953). This method, which is a variant of the 
Monte Carlo method, has been applied in recent years 
with much success to large optimization problems 
ranging from spin-glass theory in solid-state physics 
to the classic travelling salesman problem of com- 
puter science (Van Hemmen & Morgenstern, 1983; 
Kirkpatrick, Gelatt & Vecchi, 1983). It has also 
recently been found to be an effective tool in the 
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